Intrinsic Parameterizations of Surface Meshes
نویسندگان
چکیده
Parameterization of discrete surfaces is a fundamental and widely-used operation in graphics, required, for instance, for texture mapping or remeshing. As 3D data becomes more and more detailed, there is an increased need for fast and robust techniques to automatically compute least-distorted parameterizations of large meshes. In this paper, we present new theoretical and practical results on the parameterization of triangulated surface patches. Given a few desirable properties such as rotation and translation invariance, we show that the only admissible parameterizations form a two-dimensional set and each parameterization in this set can be computed using a simple, sparse, linear system. Since these parameterizations minimize the distortion of different intrinsic measures of the original mesh, we call them Intrinsic Parameterizations. In addition to this partial theoretical analysis, we propose robust, efficient and tunable tools to obtain least-distorted parameterizations automatically. In particular, we give details on a novel, fast technique to provide an optimal mapping without fixing the boundary positions, thus providing a unique Natural Intrinsic Parameterization. Other techniques based on this parameterization family, designed to ease the rapid design of parameterizations, are also proposed.
منابع مشابه
Intrinsic Parameterizations
Parameterization of discrete surfaces is a fundamental and widely-used operation in graphics, required, for instance, for texture mapping or remeshing. As 3D data becomes more and more detailed, there is an increased need for fast and robust techniques to automatically compute least-distorted parameterizations of large meshes. In this paper, we present new theoretical and practical results on t...
متن کاملWalking On Broken Mesh: Defect-Tolerant Geodesic Distances and Parameterizations
Efficient methods to compute intrinsic distances and geodesic paths have been presented for various types of surface representations, most importantly polygon meshes. These meshes are usually assumed to be well-structured and manifold. In practice, however, they often contain defects like holes, gaps, degeneracies, non-manifold configurations – or they might even be just a soup of polygons. The...
متن کاملOptimal Global Conformal Surface Parameterization for Visualization∗
All orientable metric surfaces are Riemann surfaces and admit global conformal parameterizations. Riemann surface structure is a fundamental structure and governs many natural physical phenomena, such as heat diffusion, electric-magnetic fields on the surface. Good parameterization is crucial for simulation and visualization. This paper gives an explicit method for finding optimal global confor...
متن کاملParameterization Michael S . Floater
Triangular meshes are often used to represent surfaces, at least initially, one reason being that meshes are relatively easy to generate from point cloud data. However, we often want a smoother surface representation, and hence the need arises to fit a smooth parametric surface through the vertices of the mesh. This requires making a suitable parameterization. Parameterizations are also useful ...
متن کاملSurface Shape Matching and Analysis using Intrinsic Coordinate Parameterizations
This paper presents a geometric method for parameterization, matching, and analysis of surface shapes. Surfaces are parameterized and represented by intrinsic coordinate maps derived from the conformal structure of the shape. This parameterization is invariant to rigid transformations of the shape, as well as angle-preserving parameterizations of the surface. Shape matching between coordinate m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 21 شماره
صفحات -
تاریخ انتشار 2002